Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21589, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517538

RESUMO

Soft and compliant ionic electromechanically active polymer actuators (IEAPs) are a promising class of smart materials for biomedical and soft robotics applications. These materials change their shape in response to external stimuli like the electrical signal. This shape-change results solely from the ion flux inside the composite and hence the material can be miniaturized below the centimeter and millimeter levels-something that still poses a challenge for many other conventional actuation mechanisms in soft robotics (e.g., pneumatic, hydraulic, or tendon-based systems). However, the components used to prepare IEAPs are typically not safe for the biological environment, nor is the environment safe for the actuator. Safety concerns and unreliable operation in foreign liquid environments have been some of the main obstacles for the widespread adoption of IEAPs in many areas, e.g., in biomedical applications. Here we show a novel approach to fully encapsulate IEAP actuators with the biocompatible block copolymer SIBS (poly(styrene-block-isobutylene-block-styrene)) dissolved in block-selective solvents. Reduction in the bending amplitude due to the added passive layers, a common negative side-effect of encapsulating IEAPs, was not observed in this work. In conclusion, the encapsulated actuator is steered through a tortuous vasculature mock-up filled with a viscous buffer solution mimicking biological fluids.


Assuntos
Robótica , Materiais Inteligentes , Polímeros , Solventes , Íons , Estirenos
2.
J Vis Exp ; (158)2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32391818

RESUMO

Ionic electromechanically active capacitive laminates are a type of smart material that move in response to electrical stimulation. Due to the soft, compliant and biomimetic nature of this deformation, actuators made of the laminate have received increasing interest in soft robotics and (bio)medical applications. However, methods to easily fabricate the active material in large (even industrial) quantities and with a high batch-to-batch and within-batch repeatability are needed to transfer the knowledge from laboratory to industry. This protocol describes a simple, industrially scalable and reproducible method for the fabrication of ionic carbon-based electromechanically active capacitive laminates and the preparation of actuators made thereof. The inclusion of a passive and chemically inert (insoluble) middle layer (e.g., a textile-reinforced polymer network or microporous Teflon) distinguishes the method from others. The protocol is divided into five steps: membrane preparation, electrode preparation, current collector attachment, cutting and shaping, and actuation. Following the protocol results in an active material that can, for example, compliantly grasp and hold a randomly shaped object as demonstrated in the article.


Assuntos
Biomimética , Carvão Vegetal/química , Eletrodos , Polímeros/química , Robótica , Condutividade Elétrica , Íons
3.
Sci Rep ; 4: 6913, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25372857

RESUMO

A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.


Assuntos
Órgãos Artificiais , Eletrólitos/química , Polímeros/química , Simulação de Ambiente Espacial/instrumentação , Radiação Cósmica , Planeta Terra , Técnicas Eletroquímicas , Eletrólitos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Meio Ambiente Extraterreno , Congelamento , Raios gama , Humanos , Teste de Materiais , Músculos/fisiologia , Polímeros/efeitos da radiação , Voo Espacial , Raios Ultravioleta , Raios X
4.
Phys Chem Chem Phys ; 15(24): 9605-14, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673406

RESUMO

The electromechanically and mechano-electrically active three-layered laminate composed of a Nafion membrane, carbide-derived carbon-based electrodes, and a 1-ethyl-3-methylimidazolium trifluoromethanesulphonate ionic liquid electrolyte responds to humidity gradient and can therefore serve as a differential humidity sensor or an energy harvesting element. The hydrophilic nature of all constituents of the laminate promotes sorption and diffusion of water across the membrane, causing large volumetric effects. Diffusion of water and the formation of a hydration shell around the ionic groups reorient and dislocate the ionic liquid ions, which in turn induce the formation of an electric charge across the electrodes exposed to different levels of ambient humidity. The generated electric charge can be registered as a voltage or electric current between the electrodes. Furthermore, the supercapacitor-like properties of the laminate allow storage of the electric charge in the same laminate, where it was generated.

5.
Sensors (Basel) ; 12(2): 1950-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438747

RESUMO

We present a study of an electrical model of electromechanically active carbon-polymer composite (CPC) with carbide-derived carbon (CDC) electrodes. The major focus is on investigation of surface electrode behavior upon external bending of the material. We show that electrical impedance measured from the surface of the CDC-based CPC can be used to determine the curvature of the material and, hence, the tip displacement of a CPC laminate in a cantilever configuration. It is also shown that by measuring surface signals in the process of an actuator's work-cycle, we obtain a self-sensing collision-detecting CPC actuator that can be considered as a counterpart of biomimetic vibrissae.


Assuntos
Biomimética/instrumentação , Carbono/química , Condutometria/instrumentação , Eletrodos , Modelos Teóricos , Transdutores , Vibrissas , Animais , Simulação por Computador , Eletrônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Polímeros/química , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...